
RECKON – A Reconfigurable Prototyping Kit for Engineering
and IT L aboratory Based Courses

Eduardo Bezerra 1, Mar ianne Pouchet 2, Elias Stipidis 2,
 Fernando Moraes 3, Ney Calazans 3, Augusto Einsfeldt 4

1 Space Science Centre, School of EIT, University of Sussex, England, UK

2 Communications Research Group, School of EIT, University of Sussex, England, UK
1, 3 GAPH Group, Informatics Faculty, Catholic University (PUCRS), Porto Alegre, Brazil

4 AEE Engenharia Eletronica, Joinvile, Brazil

{ E.A.Bezerra, M.Pouchet, E. Stipidis} @sussex.ac.uk,
{ moraes, calazans} @inf.pucrs.br, aee@terra.com.br

Abstract. This work describes an educational kit developed at the University of
Sussex, UK. The kit is based on reconfigurable computing technology, targeting
its use in different laboratory based courses, with minimal modifications of the
hardware components. The paper describes the software and hardware modules
of the system, and the main stages of the project.

Keywords. Reconfigurable Computing, Rapid Prototyping of Digital Systems

1. Introduction

Putting into practice the concepts taught in technological courses is an essential
complement to a good understanding of the theory. The constant changes and advances in
technology, result in challenges that universities and technical colleges have to deal with to
keep their laboratories updated. The managers of modern courses in this highly competitive
market have to find ways to provide students and tutors with appropriate tools, taking into
consideration the usually modest available budget. A prototyping kit based on reconfigurable
computing technology is a suggestion for the solution of this problem. This solution has been
implemented at the University of Sussex, UK, and is used in one module of the Data
Communications course for MSc. students at the School of Engineering and Information
Technology. The implementation of the project has become feasible due to the falli ng costs of
large Field Programmable Gate-Arrays (FPGAs) devices, which are the most widely used
components in the design of reconfigurable computers.

The students use a tool (user interface), developed according to the course requirements,
to observe and to control the execution of their experiments on the prototyping boards. It is
important to highlight here that, depending on the course, the use of reconfigurable computing
technology is completely transparent to the students. For example, in the Data
Communications module the goal is to teach protocols and standards for instance RS-232 and
RS-485, and to show how to program and use a traditional USART. In this case the students
do not even have to know about the existence of the FPGA on the prototyping board. In other
situations as in a “VHDL for synthesis” course or in a hardware/software co-design course,
additional tools such as commercial synthesis can be used by the students to generate
configurations for the FPGA.

The main objective of this paper is to introduce to the Reconfigurable Computing
community some of the features of the prototyping kit developed at Sussex. The paper is

organised as follows: Section 2 briefly describes a laboratory based course of a Brazili an
university and a similar one taught in a British university; in Section 3 there is a description of
the system architecture; Sections 4 and 5 describe the main components of the system;
Section 6 presents the case study; and Section 7 discusses conclusions and future directions.

2. Laboratory Based Courses

In order to obtain a better understanding of the motivation for the development of
Reckon, laboratory based courses of a Brazili an and a British University are introduced in this
Section.

In the Computer Organization course of the Brazili an University [1], both lecture and
laboratory courses start with a traditional, schematic-based approach to processor core design.
Later, the whole design work is redone with modern, HDL-based tools. There are three main
reasons for doing this. Firstly, to show that it is possible to design at high levels of abstraction
and still obtain competitive implementations, due to improvements in quality of current CAD
tools. Secondly, to provide students with a comprehensive insight into the panoply of
hardware design methods and tools, by comparing these two significantly distinct approaches.
Thirdly to make it clear to students that HDLs are not programming languages, which is
achieved by the mapping of schematic symbols and structures to the syntactic and semantic
structures of the chosen HDL. This last reason makes instructors insist to students that they
must “ think hardware” when using HDLs, even if the language they use allows them to view
hardware as software. The Computer Organization Laboratory course is divided into three
units. In Unit 1, entitled Classical Digital Circuit Design, students review basic concepts
acquired in the previous Digital Circuits course, working with schematic capture and
simulation tools. They implement basic combinational and sequential blocks such as adders,
ALUs, counters and finite state machines. Next, in Unit 2, Classical CPU Design, they
employ the same set of tools, to implement the case study of the lecture course, step by step,
using RTL schematic modules. Finally, in Unit 3 - HDL Hardware Design - an HDL
language is introduced and used to describe hardware at the behavioural and structural levels,
contrasting the complexity of the circuits they can handle with that of the previous approach.
The target HDL chosen is VHDL. The lab course comprises around 15 2-hour practical
sessions. Examples are available for the students, from simple ALUs up to small l oad-store
processors. Both for their work with schematic capture and with VHDL synthesis, they have
to implement their circuits on available prototyping boards (XS40/Xstend). The use of Reckon
will i ntroduce more flexibilit y for the lecturer in defining the case studies, and it will provide
the students with higher levels of observabilit y and controllabilit y when running their
experiments.

In the British university, the Reckon system is used in the Data Communications module
to demonstrate to students different serial communication protocols. The Reckon motherboard
is connected to a daughter board consisting of an 8251a USART and RS232/RS422 drivers
and receivers. In a sequence of three laboratories, issues involved in the data-link layer of
serial data transmission are demonstrated allowing students to choose design settings and
observe results. Transmission and reception can be conducted either on the same Reckon
system or by using two separate systems – one as transmitter and the other as receiver.
RS232, RS422 and Manchester Encoding are all used as physical layer protocols throughout
the labs, and a simple Java GUI is used as well , for user interaction and to send simple control
commands to the hardware.

In the first laboratory, the asynchronous transmission of characters and frames is
practically demonstrated and the concepts of baud-rate, parity and Block Sum Check are
introduced. Here the FPGA receives the appropriate user-defined USART settings from the

GUI and is responsible for the control and timing of the USART, serial to parallel
conversions, block sum check calculations and baud rate generation. The second lab
introduces the concept of synchronous data transmission. Here the FPGA has the added
functionality of Manchester Encoding/Decoding and the generation of CRC error detection
codes in order to further demonstrate to students the issues involved in serial data
transmission. Finally, Data Link Protocols are introduced in the third lab. Idle RQ is again
added to the FPGA functionality using a user controlled timing procedure to clearly display
the step-by-step execution of this protocol. The advantages of the Reckon system over the
previous laboratory kit used in this course are numerous. Firstly, the reduction in complexity
and size obtained in the use of a single FPGA as opposed to discrete hardware components is
phenomenal. Secondly the flexibilit y of the reconfigurable FPGA allows for easy
expandabilit y should the course co-ordinator decide to add further modules (additional
protocols perhaps) or adjust existing ones. The Java interface as well allows the execution of
the laboratories to be platform-independent and even potentially web-based for optional
distance use.

3. Prototyping Ki t Architecture

The kit comprises of four main components: the control board; the motherboard; the
daughter board; and the user interface. As shown in Figure 1, students use the software
module (user interface) to set up the mother and daughter boards, and to control the execution
of their laboratory assignments. In the current version of the system, the host computer is
connected to the prototyping platform via serial port. The use of a USB port is planned for
future versions.

User Interface

(Java program running on the host computer)

Control board

(Microcontroller with embedded flash memory)

Daughter board

(Students inject/observe signals)

Motherboard

(FPGA)

Student

Figure 1. Block diagram of Reckon

The control board consists, basically, of a microcontroller [2] with embedded flash
memory and serial port interfaces. The microcontroller runs an embedded operating system
used to configure the FPGA and to manage the communication between the FPGA and the
host computer. The software module running on the host computer is designed to use the
services provided by the operating system.

The motherboard consists of a Xili nx Virtex FPGA [3], an oscill ator, and a power
regulator module responsible for supplying the power for all boards. There is a Finite State
Machine (FSM) running on the FPGA. The main function of the FSM is the provision of the
interface between the daughter board and the control board (and consequently, the user
interface). Using an external oscill ator chip in the motherboard to generate a clock signal to
the circuit implemented within the FPGA, provides the flexibilit y of allowing different
oscill ators with different clock frequencies to be used for different applications.

The daughter board is where the students run their experiments. Although some
courses may require more than one daughter board, usually one daughter board per course/kit
is suff icient. Some courses may not need daughter boards at all . The user interface is designed
in order to generate signals that can be observed from the daughter board output pins. The
system as a whole is designed in modules in order to facilit ate its adaptation to different
courses. From the hardware point of view (i.e. chips and boards), only a new daughter board
may be necessary for a new course. Figure 2 shows the three boards components of Reckon.

Figure 2. Reckon: control board, motherboard and daughter board.

4. The Software Module (Host Computer)

The user interface has been written in Java [9] in order to run on different platforms. As
shown in Figure 1, the user interface is connected to the control board by means of the Java
Communications API commapi [4]. This Sun’s API has been designed to help in the
development of platform-independent communications applications, but at the time this paper
was written there were versions available only for MS-Windows and Solaris.

In order to use commapi, the software module (host computer) creates an object to
manage the serial communication: connection = new SerialConnection(mainframe,
parameters, systemStatus);. The next step is to open the serial port in the host computer where
the Control board is connected: connection.openConnection();. After that the prototyping kit
is accessed by using the sendByte method from commapi. The embedded operating system
running on the Control board has a set of services used by the user interface. For example, as
shown in Table 1, in order to obtain the version of the prototyping kit and the amount of

available memory on the microcontroller, the pair of commands used is:
connection.sendByte(0x40); and connection.sendByte(0x55);. Service 0x47 provides a way for
the host computer to exchange data with the FPGA. Considering the daughter board used as a
case study in this work (Section 6), in order to reset the 8251A USART, the sequence of
commands is connection.sendByte(0x47); connection.sendByte(0x20); and
connection.sendByte(0x00);. In this example, service 0x47 sends to the FPGA the bytes 0x20
and 0x00, and the FSM running on the FPGA understands that it is the command to reset the
USART chip on the daughter board.

Figure 3. GUI of the software module

The Graphical User Interface (GUI) of the software module has been designed to be as
simple as possible in order to keep the students’ attention on the subject of the laboratory
session. As shown in Figure 3, the students select few parameters per screen and press “Next”
to proceed to the next screen. After three or four screens, depending on the experiment, the
students are able to observe and compare the obtained results against the expected ones.

Table 1. List of services of the embedded operating system running on the Control board.

Command Description Data Response
0x40 Read version and memory size 55 13 bytes + 0x0D + 0x0A
0x41 Set 32 bits WR address 4 bytes, MSB first address 4 bytes, MSB first
0x42 Erase sector (flash memory) Sector (30 to 3F) ‘E’ : erased; ‘F’ : fail
0x43 Command 30: disable FPGA

31: enable FPGA
‘0’ : success
‘1’ ..’9’ : fail

0x45 Write byte and inc. address Value Value complemented
0x46 Read byte and inc. address 52 Data read
0x47 RD/WR 2 bytes from/to FPGA 2 bytes, MSB first 2 bytes read, MSB first

5. The Control board and the Motherboard

In the original design there was no need for the Control board. The idea was to have a
microcontroller core embedded into the FPGA, interfacing the prototyping boards to the host
computer. However, a reliable and inexpensive microcontroller core has not been found and,
in order to keep the motherboard as simple as possible, an FPGA configuring board with a

PIC microcontroller has been acquired from the Brazili an company AEE Engenharia
Eletronica. The embedded operating system running on the PIC microcontroller provides the
services listed in Table 1.

Once the FPGA configuration bitstream has been sent to the Control board, the
microcontroller stores it into the embedded flash memory. Every time the system is powered
up, the microcontroller (Control board) uses the stored bitstream to configure the FPGA
(motherboard). The services listed in Table 1 can be used to send a new configuration
bitstream to the microcontroller, to read a stored bitstream from the flash memory, and to
send/receive bytes to/from the FPGA. The embedded operating system in use has been written
in assembly language, and the FSM for the FPGA has been designed using schematic
diagrams. The versions in use of the operating system and the FSM have been implemented
by AEE. The version of the FSM developed at Sussex was written in VHDL [7][8], but it is
not in use because of scheduling problems (see Figure 4 for project details).

Figure 4. The stages of the project

Parallel module of Sun’s API commapi does not work. Serial
module is used instead.

Search for a manufacturer for the boards. Brazili an company
AEE offers ad-hoc solution with a very competitive price.

Initial design: motherboard with FPGA/external oscill ator, and
daughter board to run the experiments. A smaller FPGA is used
to reconfigure the main FPGA and to manage the communication
with host. User interface written in Java, and use of parallel
connection between motherboard and host computer.

AEE suggest the use of a microcontroller
instead of the smaller FPGA to program the
bigger FPGA, as they have already had this
solution as part of their line of products.

Start of development of Java code, using the serial module of
commapi. Start of the development of VHDL code to be used
to configure the FPGA.

Start of the development of the boards. AEE
make changes in their product available
(control board and mother board) in order to
adapt it to Sussex design requirements
(daughter board and Java software).

AEE builds the daughter board.

Brazili an regulations for expor tation cause confusion for
British system, resulting in not expected delay for
payment/manufacturer of boards.

When the prototyping boards arrive from Brazil , there will
be no time left for system integration: Java code running
on host computer; embedded operating system running on
Control board; VHDL code used to configure FPGA; and
8251A USART on daughter board.

The standard embedded operating system
(AEE system) is modified, and an FSM for
the FPGA is developed using schematic
capture diagrams. The FSM is similar to the
one under development in VHDL at Sussex.

Boards arrive just before the starting of laboratory sessions
at Sussex. As expected, there is no time left for integration
between the Java program and the rest of the system
(boards). The FSM developed by AEE is used instead.

The system as a whole works partially, but there are still some
modules to be implemented for the Data Communications
course (e.g. Manchester encoder/decoder).

Project activities
Sussex

Project activities
AEE

Present status of the
project at AEE

t t Present status of the
project at Sussex

6. Case Study: Targeting the Data Communications course

As an example of the functionality of the system, for the Data Communications course
(British university) the daughter board has an 8251A USART [5], RS-232/RS-422 converters
and several test pins, as shown in Figure 2. The students can use test and protocol analyser
equipment to verify the functionality of their designs. As stated before, there is no need for an
8251A chip in the daughter board. A USART core could have been implemented in the FPGA
itself, but at the time the system was designed such cores were not full compatible with the
8251A USART at an affordable cost. In the Sussex version, the FPGA has three main
components, all of them implemented in VHDL: a manager kernel, a baud rate generator and
a Manchester encoder/decoder. The kernel is responsible for the control of all the
components, and also for programming and controlli ng the USART in the daughter board.
The students use the Java program on the host computer to program the USART and to
send/receive characters and complete frames either synchronous or asynchronous.

In the AEE version, the FSM running on the FPGA programs the USART, generates the
baud-rate and controls the exchange of bytes between the daughter board and the host
computer. A GUI has to be designed for each new course. The first screen of the GUI for the
Data Communications course is shown in Figure 3. Figure 4 shows the different stages of the
project.

7. Final Remarks

This work briefly describes an educational kit based on reconfigurable computing

technology. The kit has been designed for its reusabilit y in different laboratory based courses.
Just to exempli fy the flexibilit y of the kit, in the case of a microprocessor or computer
organisation course, with minimal effort, a new user interface can be implemented by reusing
the existing objects. A microprocessor core could be used in the FPGA, and the daughter
board would have, mainly, test pins. The possibilit y of reusabilit y of Intellectual Property (IP)
cores and Java objects is an important point for the success of this project.

The most important hardware components of the kit (control board and motherboard)
are off -the-shelf boards, and so any other prototyping board based on FPGAs could have been
used. The control board and motherboard alone can be seen as just another generic FPGA
based prototyping platform. What makes the difference is the use of those two boards in
conjunction with the daughter board and the software running on the host computer. Systems
with similar features as Reckon, and targeting similar applications (e.g. training and
education) have not been found and, therefore, a comparative study could not be made.

In the case study, the daughter board has a USART (8251A) chip. An IP core could
have been used in the FPGA, dispensing with the need for an external chip, but the USART
cores available are too expensive for this project. Inexpensive or even free UART IP cores
were available, but the course required a USART component. The implementation of a
USART core is an alternative, but unfortunately there was no time for that, and it will have to
be done as a future work.

The system has not been fully validated, as it has been used in only one course at the
University of Sussex. In order to have qualitative and quantitative results regarding the system
applicabilit y, it will be necessary to use the system in different courses, and to ask for
feedback from the final users - the tutors and students.

The original idea was to have a microcontroller based system, with no reconfigurable
devices on board. That solution would have created problems for the use of the kit in different
courses. This is true because of the fixed architecture imposed by microcontroller-based
systems for example, the small number of I/O ports available.

The methods and strategies studied to make feasible the migration of a traditional
microcontroller based design into an FPGA based one, was a significant contribution from the
research point of view. However, on the whole, this project should be categorised as a
technological work instead of a scientific one.

The biggest advantage of this system, from a financial point of view is that the daughter
board, in most of the cases, is a very simple and, consequently, inexpensive component. In
case of changes or updates to course content, there will be no need for further investments in
extra hardware. Only new daughter boards may be necessary, with an upgrade in the FPGA
configuration and in the user interface.

Considering the low cost of the system, about
� � � � � � � � � � �

, some students may decide
to buy the kit. The configuration file and the user interface will be available on the Lecturer’s
web site for students to download and use at home. An example of improvement in this
project is the use of a core of a microcontroller on the FPGA, avoiding the need for the
Control board. This will reduce the final cost of the kit.

Acknowledgements

This work is mainly supported and funded by the Teaching and Learning Development Unit
and the School of EIT, University of Sussex, UK. This research is also supported by CNPq –
Brazili an Council for the Development of Science and Technology, and PUCRS – Pontific
Catholic University of Rio Grande do Sul, Brazil .

References

[1] Calazans, N. L. V.; and Moraes, F. G. “ Integrating the Teaching of Computer

Organization and Architecture with Digital Hardware Design Early in Undergraduate
Courses” , IEEE Transactions on Education, vol. 44, no. 2, May 2001, pp. 109-119.

[2] Microchip Technology Inc. “PIC 16F87X databook” , Microchip, USA, 1999, 200p.
[3] Xili nx “The Programmable Logic Data Book” , Xili nx, San Jose, 1999.
[4] Sun Microsystems “JavaTM Communications API – commapi” Java Developer

Connection (JDC) web-site <http://developer.java.sun.com>, 2001.
[5] Intel Corporation “Microprocessor and Peripheral Handbook” . Intel, Santa Clara, 1987.
[6] Electronics Industry Association (EIA) "Interface between Data Terminal Equipment and

Data Communications Equipment Employing Serial Binary Data Interchange", EIA,
Washington, D.C., 1985.

[7] Xili nx “Synthesis and Simulation Design Guide”. Xili nx, 1998, 314p.
[8] Synplicity “Synplify Better Synthesis – User Guide release 5.0” Synplicity, 1998.
[9] Sun Microsystems, “JavaTM 2 SDK, Standard Edition Documentation” , Sun, 2001.

<http://java.sun.com/j2se/1.3/docs/index.html>

